МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ «ЦЕНТР ОБРАЗОВАНИЯ «ПЕРСПЕКТИВА»

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

«СОРЕВНОВАТЕЛЬНАЯ РОБОТОТЕХНИКА»

для обучающихся 8-11 классов

Срок реализации программы — **1 год** Направленность программы — **техническая** Уровень программы - **углубленный**

Составитель: Неудачин П.Е., педагог дополнительного образования

Принята на заседании Педагогического совета Протокол № 3 от 08.06.2021 Утверждена приказом от 08.06.2021 № 76

г. Зеленогорск

2021г.

Пояснительная записка

Дополнительная общеобразовательная общеразвивающая программа «Соревновательная робототехника» (далее – Программа) имеет техническую направленность, нацелена на достижение высокого результата обучающимися на соревновательных мероприятиях.

Актуальность Программы обусловлена необходимостью развития инженерного образования, подготовки инженерных кадров, что отражено в Национальной технологической инициативе, Концепции развития дополнительного образования детей.

Необходимость воспитания инженерных кадров в современной России подчеркнута рядом документов: Стратегией развития отрасли ИТ в РФ на 2014-2020 гг. и на перспективу до 2025 г., Комплексной программой «Развитие образовательной робототехники и непрерывного ІТ-образования» АНО «Агентство инновационного развития».

Использование соревновательной робототехники становится педагогическим ресурсом, так как ценность учебной деятельности, заключающаяся в обеспечении способности постоянно учиться и изменяться соответственно изменениям, происходящим в мире, проявляется здесь особенно ярко. Решая научно-познавательные и учебно-практические задачи, связанные с конструированием, программированием в робототехнике, учащиеся самостоятельно при поддержке педагога получают новые знания и умения применять их в своей учебной и исследовательской деятельности по предметам естественнонаучного и математического направлений.

Нормативно-правовым основанием при разработке дополнительной общеобразовательной программы «Соревновательная робототехника» являются Федеральный закон «Об образовании в Российской Федерации» от 29.12.2012 N 273-ФЗ, «Концепция дополнительного образования детей», утвержденная распоряжением Правительства Российской Федерации от 04.09.2014 № 1726, Исходя из актуальности робототехники для системы дополнительного образования, мы определяем цель программы и задачи по ее достижению.

Программа предназначена для обучающихся, имеющих базовый опыт конструирования и программирования роботов LEGO. Обучающиеся решают задачи для подготовки к городским, региональным, российским и международным соревнованиям.

Основой программы является: изучение регламентов соревнований, освоение основ разработки программно-аппаратных решений в соответствии с регламентами мероприятий, выбор оптимального алгоритма программы, написание и совершенствование программ, рассмотрение основных ошибок, выбор выигрышных стратегии, разработка творческих проектов, отработка навыков работы в команде и на соревновательных мероприятиях.

Программа может осваиваться и без предварительного обучения по программам технической направленности.

Цель программы:

Развитие научно-технического и творческого потенциала личности ребенка путем организации его деятельности в процессе интеграции соревновательных мероприятий по робототехнике.

Задачи программы:

Углубление знаний по основным принципам механики;

Ознакомление с основами программирования в компьютерной среде MINDSTORMS EV3 при подготовке к соревновательным мероприятиям;

Развитие умения творчески подходить решению задачи; К решение Развитие умения довести задачи до работающей модели; Развитие умения излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений;

Подготовка и участие в соревновательных мероприятиях «First» и «WRO»; Создание условий для выявления творческих, одаренных детей в научнотехнической сфере;

Повышение уровня инженерной компетентности, обучающихся и мотивация к техническому конструированию и робототехнике;

Подготовка обучающихся к участию во Всероссийских и Международных соревнованиях роботов;

Реализация программы осуществляется с помощью материальнотехнического и методического обеспечения соревновательных мероприятий. Настоящий курс предлагает использование образовательных конструкторов LEGO MTNDSTORMS EV3 как инструмента для обучения школьников конструированию, моделированию и компьютерному управлению в рамках подготовки к соревнованиям.

Срок реализации программы, режим занятий.

Программа рассчитана на 1 год обучения. Годовая нагрузка на обучающегося составляет 144 часа. Режим занятий соответствует нормам и требованиям САН ПиН: два раза в неделю по два академических часа с десятиминутным перерывом. Предусматривается работа в малых группах при подготовке к соревнованиям.

В рамках программы предусмотрена вариативная часть, направленная на тренировочную работу, погружение, практикумы в рамках подготовки обучающихся к конкурсным мероприятиям — соревнованиям, форумам, чемпионатам. Количество вариативных часов в год — 72.

Оптимальная наполняемость в объединении – 10 человек.

Формы занятий:

- лекционная (получение учащимися нового материала);
- самостоятельная (ученики выполняют индивидуальные задания в течение части занятия или одного-двух занятий);
- проектная деятельность (получение новых знаний, реализация личных проектов);
- соревнования (практическое участие детей в разнообразных мероприятиях по робототехнике);
- работа в малых группах погружение;
- во время карантинных мероприятий, командировки педагога и выезда на конкурс с одной из групп, в других группах занятия могут проводиться с примене-

нием электронного обучения и дистанционных образовательных технологий. Обучающийся и педагог взаимодействуют в образовательном процессе в следующих режимах: синхронно, используя средства коммуникации и одновременно взаимодействуя друг с другом (online); асинхронно, когда обучающийся самостоятельно выполняет учебные задания (offline), а педагог оценивает правильность их выполнения и выдает рекомендации. Выбор режим определяется педагогом исходя из особенностей содержания программы, объема часов и используемого оборудования.

Дистанционное обучение осуществляется в формах: видео-урок, индивидуальное задание, консультация, занятие в чате;

- тренировочные занятия.

Ожидаемые результаты и способы их определения.

По окончании программы обучающийся должен:

знать основы механики, автоматики и программирования в среде MINDSTORMS EV3;

уметь собирать модели, используя готовую схему сборки, а также по эскизу; уметь создавать собственные проекты и при необходимости программировать роботизированные модели;

предъявляемый результат: осуществление сборки и написание программы для робота на поле; создание проекта;

участие в соревнованиях и мероприятиях различного уровня.

Виды и формы контроля:

Индивидуальные задания; контрольные задания; личные проекты; участие в соревнованиях и мероприятиях различного уровня. Промежуточный контроль проходит в виде состязаний или защиты проектов, оцениваемых по регламентам соревнований. Итоговый контроль по темам проходит в виде состязаний роботов на соревновательных мероприятиях. Соревнования включают в себя проектирование, создание и программирование робота, способного выполнить поставленные задачи. Результаты контроля фиксируются в протоколах состязаний.

По каждому параметру разработаны критерии.

Базовый уровень предполагает усвоение основных тем программы, работу на репродуктивном уровне.

Повышенный уровень предполагает усвоение основных тем программы, самостоятельность в выборе инструментария, способов работы при выполнении задания.

Творческий уровень предполагает возникновение самостоятельных идей у обучающихся и реализацию их через участие в различных проектах, конкурсах, фестивалях и т.п.

Методическое обеспечение программы:

Образовательные конструкторы LEGO EV3, компьютеры (ноутбуки/нетбуки) не ниже РШ 733 Мгц, ОЗУ 128 Мб для составления программ для роботов. Предпочтительная конфигурация технических и программных средств включает: учебный класс (8-10 рабочих мест); наборы конструкторов LEGO и MINDSTORMS NXT EV3, компьютеры ОС Windows XP, W7, W10 с установленной программой MINDSTORMS EV3, соревновательные поля «First», соревновательные поля «WRO».

УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

No	Разделы программы	Теория	Практи- ка	Всего
1	Введение в робототехнику	4	0	4
1.1	Введение в робототехнику. ТБ	4	0	4
2	Соревновательные мероприятия «FIRST»	8	4	12
2.1	Регламент сезона	2	0	2
2.2	Проект. Стратегии игры. Базовые ценности.	4	0	4
2.2	Основы механики. Конструирование робота.	2	4	6
3	Выполнение заданий игр FIRST	12	26	38

	Итого	48	168	216
7	Проектная работа, подготовка к соревнованиям, соревнования (в том числе вариативные часы)	2	82	84
6.3	Управление с обратной связью	2	12	14
6.2	Управление без обратной связи	2	4	6
6.1	Регуляторы	4	4	8
6	Управление роботом	8	20	28
5.3	Типы команд и управляющие структуры	4	10	14
5.2	Программирование в среде EV3	0	6	6
5.1	Конструирование робота	0	4	4
5	Всемирная робототехническая олимпиада	4	20	24
4.2	Защита проекта	0	8	8
4.1	Творческий проект	10	8	18
4	Творческий проект	10	16	26
3.6	Итоговая игра	2	0	2
3.5	Инженерная книга	2	6	8
3.4	«End Game» режим»	2	6	8
3.3	«Управляемый режим»	2	6	8
3.2	«Автономный режим»	2	6	8
3.1	Технические характеристики. Программное обеспечение.	2	2	4
№	Разделы программы	Теория	Практи- ка	Всего

СОДЕРЖАНИЕ ПРОГРАММЫ

Тема 1. Введение в робототехнику

Что такое робот? Какие бывают роботы. Современные тенденции робототехники. Зарубежные и отечественные разработки. Презентация программы.

Тема 2. Соревновательные мероприятия «First»

Регламент соревнований. Проект. Стратегии игры. Базовые ценности. Основы механики. Конструирование робота.

Тема 3. Выполнение заданий игры.

Технические характеристики. Программное обеспечение. Выполнение заданий на игровом поле.

Тема 4. Творческий проект.

Проблем, исследование, решение. Защита проекта.

Тема 5. Всемирная робототехническая олимпиада.

Конструирование робота. Программирование в среде EV3. Типы команд и управляющие структуры.

Тема 6. Управление роботом.

Управление моторами. Использование датчиков. Регуляторы: релейный, пропорциональный, дифференциальный, интегральный. Движение по линии. Управление без обратной связи. Управление с обратной связью.

Контрольное занятие «Углеродная нейтральность».

Тема 7. Проектная работа, подготовка к соревнованиям. Соревнования.

Список соревнований: «FIRST», «WRO», «Манипуляторы», «Траектория», «Сортировщик», «JuniorSkills».

Методическое обеспечение программы

Условия реализации данной программы:

Для проведения занятий необходимо использовать образовательные конструкторы LEGO EV3, компьютеры (ноутбуки/нетбуки) не ниже РШ 733 Мгц, ОЗУ 128 Мб для составления программ для роботов.

Предпочтительная конфигурация технических и программных средств включает:

Учебный класс (8-10 рабочих мест);

Наборы конструкторов и LEGO MINDSTORMS EV3

Компьютеры ОС Windows XP, W7, W10 с установленной программой MINDSTORMS EV3.

Диагностический материал

Технологические карты

Тема 2. Соревновательные мероприятия «First Lego League»

Контрольное занятие «Разработка оптимальной стратегии игры и конструкции робота»

Таблица 1 - Карточка для оценивания работы

Nº	Наименование критерия	Оценка (макс 5 баллов)
1	Знание регламента «First» (Критерии, правила, под- счет очков)	
2	Эффективность выбора конструкции модели под поставленную задачу (жесткость, подвижность)	
3	Использование рычагов (1, 2, 3 рода)	
4	Использование передач (ременные, зубчатые, цепные, повышающие, понижающие)	
5	Максимальная грузоподъемность и количество степеней свободы	
6	Правильность соединения деталей	
7	Сложность конструкции	
8	Полнота выполнения задачи	

Тема 3. Выполнение заданий игры

Лабораторные работы: «Автономный режим», «Управляемый режим», «End Game режим». Контрольное занятие «модель робота для выполнения задач игрового поля First»

Таблица 2 - Карточка для оценивания работы

Наименование критерия	Оценка
	(макс5 баллов)
Правильность использования языка программи-	
рования	
Эффективность использования алгоритмических	
конструкций	

	Управление моторами (направление, мощность)	
	Оптимальное использование различных типов датчиков (касания, освещенности, цвета, расстояния)	
	Точность и полнота выполнения задачи	

Тема 4. Творческий проект

Контрольное занятие «Защита проекта»

Таблица 3 - Карточка для оценивания работы

Наименование критерия	Оценка (макс5 баллов)
Оригинальность и творческий подход	
Информативность. Грамотность речи	
Четкость. Доступность	
Артистичность	
Работа модели	

Тема 5. Всемирная робототехническая олимпиада

Лабораторные работы: «Продвинутое управление моторами», «Синхронизация моторов», «Подсчет перекрестков»

Контрольное занятие «Робот-сортировщик»

Таблица 4 - Карточка для оценивания работы

Наименование критерия	O	ценка
	(макс.	5 баллов)
Правильность использования языка программиро-		
вания		
Эффективность использования алгоритмических		
конструкций (ветвление, цикл, подпрограммы)		
Эффективность использования различных команд		
Использование захватов и манипуляторов.		
Точность и полнота выполнения задачи		

Тема 6. Управление роботом.

Контрольное занятие «Углеродистая нейтральность»

Таблица 5 - Карточка для оценивания работы

Наименование критерия	Оценка (макс. 5 баллов)
Правильность использования языка программирования	
Эффективность использования алгоритмических конструкций	
Эффективность использования различных команд	
Эффективность управления роботом (различные типы регуляторов, обмен данными)	
Точность и полнота выполнения задачи	

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Вторая гимназия [Электронный ресурс]. Режим доступа: http://www.gymn2.ru/assets/files/sps_osobennost_wozrast.pdf.
- 2. Данчук, И. И. Актуальность современного дополнительного образования в развитии творчества детей / И. И. Данчук // Актуальные проблемы гуманитарных и естественных наук. 2014. № 01 (60). Ч. II.
- 3. Кузьмина М.В., Мелехина С.И., Пивоваров А.А., Скурихина Ю.А, Чупраков Н.И. Образовательная робототехника / сборник методических материалов для работников образования по развитию образовательной робототехники в условиях реализации требований Федеральных государственных образовательных стандартов. Киров: ООО Типография "Старая Вятка", 2016 256 с.
- 4. Литвин А.В., Организация детского лагеря по робототехнике: методические рекомендации / Литвин А.В.- М: Изд. полиграфич. центра "Маска", 2015. 72 с.
- 5. Машарова Т.В. Современный урок в условиях введения нового федерального государственного образовательного стандарта: методические рекомендации / Машарова Т.В. Киров: ИРО Кировской области, 2014. 40 с.
- 6. Мелехина С.И., Методические рекомендации к программе «Путешествие с компьютером в мир интересных профессий» для 1-3 классов / С.И.

- Мелехина, О.О. Воробьева / под научн. Ред. С.И. Мелехиной Киров: ООО «Типография «Старая Вятка», 2015. 47 с.
- 7. Методическое пособие для учителя: Технология и физика. Lego Education. 2010. 133 стр.
- 8. Овсяницкая, Л.Ю. Курс программирования робота Lego Mindstorms EV3 в среде EV3: основные подходы, практические примеры, секреты мастерства / Д.Н. Овсяницкий, А.Д. Овсяницкий. Челябинск: ИП Мякотин И.В., 2014. 204 с.
- 9. ПервоРобот NXT. Введение в робототехнику. MINDSTORMSNXT education, 2006. 66 с
- 10. Соревновательная деятельность региональных ресурсных центров технического творчества для детей и молодежи на базе социально ориентированных НКО на примере Программы «Робототехника»: методическое рекомендации Автономная некоммерческая организация «Научно-методический центр «Школа нового поколения». 2013. 38 с.
- 11. Технология и информатика: проекты и задания. ПервоРобот. Книга для учителя. М.: ИНТ. 80 с.
- 12. Филиппов, С.А. Робототехника для детей и родителей: СПб. «Наука», 2013. 319 с.
- 13. Geektimes [Электронный ресурс]. Режим доступа: https://geektimes.ru/post/268520/.
- 14. LEGO Mindstorms NXT: робототехника для школ и вузов Нижнего Новгорода [Электронный ресурс]. Режим доступа: http://nnxt.blogspot.com/.