|
Танцы спутников Юпитера
сезон 2015
С.Гурьянов |
|
Солнечная система - достаточно плоское образование. И за её базовую плоскость ученые выбрали плоскость эклиптики (плоскость, по которой Земля обращается вокруг Солнца).
Орбита Юпитера имеет свой наклон, поэтому - одну половину своего орбитального периода далекий гигант движется чуть к северу, а другую - уже к югу от эклиптики...
Пересечением двух любых плоскостей является прямая линия (так называемая линия узлов). Значит - два раза за полный орбитальный период (примерно каждые 6 лет) наступают временные интервалы, когда Солнце, Земля и Юпитер все-таки оказываются в одной плоскости.
Именно в это время для земного наблюдателя спутники Юпитера могут проходить один на фоне другого,
или отбрасывать друг на друга тени (см. мои анимированные рисунки выше)!
В последний раз взаимные явления в системе спутников Юпитера мы могли наблюдать с апреля 2009 по апрель 2010 годов (а предыдущие явления - с осени 2002
и до конца лета 2003 годов.
И вот орбита Земли снова пересекает экваториальную плоскость Юпитера. А это значит, что в текущем году знаменитые спутники планеты-гиганта (1-Ио; 2-Европа; 3-Ганимед; 4-Каллисто) будут вновь "хороводить вдоль одной линии"...
В очередном сезоне реально наблюдаемыми будут 442 события из 477 (с 01.09.2014 по 20.07.2015).
Приводимая ниже таблица - моя компиляция из двух первоисточников для текущего года:
ежегодного альманаха обсервтории ВМФ США.
и Института небесной механики (Бюро долгот) во Франции.
Кстати, на французском ресурсе, есть замечательные презентации по теме (как происходят явления, как наблюдать, куда отсылать результаты и т.п.)...
+ Хорошая статья о подобных событиях (с реальными видео предыдущих явлений) от Universetoday
В таблице приведены дата и моменты начала и окончания явления по Гринвичу; само явление и его тип (
O покрытие, Е - затмение).
Продолжительность явления в минутах. Блеск покрываемого (или затмеваемого) объекта m и его ожидаемое ослабление dM (в таблице ниже я оставил только те явления, в ходе которых блеск падает примерно на 0.5 звездной величины и более).
Пример расшифровки первой строки: 1E4 - первый галилеевый сутник Юпитера (Ио) затмевает четвертого (Каллисто).
Тень от Ио движется по поверхности Каллисто ~8.6 минуты, вызывая ослабление блеска последнего на 0.48 звездной величины...
Если в указанное время Юпитер для вас находится над горизонтом - не упускайте свой шанс!!!
Таблица лучших взаимных явлений 2015 года:
==================================================================
Год Мс Дн Нач(UT) Кнц(UT) Явление Длит(мин) m ~dM
==================================================================
2015 1 15 12 30 35 12 39 10 1E4 8.6 4.7 0.483
2015 1 19 2 31 4 2 36 36 3O2 5.5 4.3 0.465
2015 1 23 9 5 32 9 19 58 4E3 14.4 4.4 1.393
2015 1 23 16 20 17 16 31 20 4E1 11.0 4.7 0.667
2015 1 24 18 47 50 19 1 32 4E1 13.7 4.7 1.113
2015 1 26 5 12 55 5 18 34 3O2 5.6 4.3 0.465
2015 1 28 6 17 50 6 26 50 2E1 9.0 4.5 0.471
2015 1 29 14 31 13 14 34 51 1O2 3.6 4.5 0.626
2015 1 31 19 31 47 19 40 30 2E1 8.7 4.5 0.538
2015 2 2 3 29 31 3 33 7 1O2 3.6 4.5 0.536
2015 2 2 7 53 52 7 59 36 3O2 5.7 4.3 0.465
2015 2 2 18 17 18 18 24 31 3E1 7.2 4.2 0.488
2015 2 4 8 44 28 8 52 56 2E1 8.5 4.5 0.606
2015 2 5 16 27 47 16 31 21 1O2 3.6 4.5 0.482
2015 2 5 18 55 41 19 2 38 1E3 7.0 4.2 0.475
2015 2 7 21 57 1 22 5 14 2E1 8.2 4.5 0.676
2015 2 9 10 34 28 10 40 13 3O2 5.8 4.3 0.465
2015 2 9 13 33 46 13 41 56 4E2 8.2 4.8 0.784
2015 2 9 21 6 6 21 13 20 3E1 7.2 4.2 0.567
2015 2 11 11 8 33 11 16 34 2E1 8.0 4.5 0.769
2015 2 11 13 24 44 13 50 49 4E3 26.1 4.4 1.393
2015 2 12 21 43 43 21 51 25 1E3 7.7 4.2 0.642
2015 2 14 23 59 46 0 6 26 2O1 6.7 4.5 0.466
2015 2 15 0 20 3 0 27 51 2E1 7.8 4.5 0.849
2015 2 16 13 15 40 13 21 19 3O2 5.6 4.3 0.465
2015 2 16 23 52 37 23 59 49 3E1 7.2 4.2 0.567
2015 2 18 13 2 0 13 8 33 2O1 6.5 4.5 0.518
2015 2 18 13 30 44 13 38 20 2E1 7.6 4.5 0.896
2015 2 20 0 34 55 0 43 25 1E3 8.5 4.2 0.835
2015 2 22 2 4 37 2 11 2 2O1 6.4 4.5 0.571
2015 2 22 2 41 28 2 48 51 2E1 7.4 4.5 0.896
2015 2 23 17 9 39 17 16 44 3E2 7.1 4.3 0.462
2015 2 24 1 42 0 1 47 30 3O1 5.5 4.2 0.567
2015 2 24 2 37 51 2 44 54 3E1 7.1 4.2 0.567
2015 2 25 15 6 51 15 13 9 2O1 6.3 4.6 0.586
2015 2 25 15 51 30 15 58 41 2E1 7.2 4.6 0.896
2015 2 26 22 43 54 22 52 47 4E2 8.9 4.9 0.947
2015 2 27 3 31 11 3 40 40 1E3 9.5 4.2 0.968
2015 2 27 4 27 46 4 38 55 4E3 11.1 4.4 0.581
2015 3 1 4 9 33 4 15 42 2O1 6.1 4.6 0.586
2015 3 1 5 1 36 5 8 34 2E1 7.0 4.6 0.896
2015 3 2 20 22 5 20 29 52 3E2 7.8 4.3 0.465
2015 3 3 4 5 32 4 10 60 3O1 5.5 4.2 0.567
2015 3 3 5 21 56 5 28 49 3E1 6.9 4.2 0.567
2015 3 4 17 12 2 17 18 1 2O1 6.0 4.6 0.586
2015 3 4 18 11 7 18 17 53 2E1 6.8 4.6 0.849
2015 3 6 6 34 59 6 45 57 1E3 11.0 4.2 0.977
2015 3 7 14 53 38 15 3 51 2E4 10.2 4.9 0.533
2015 3 8 6 15 1 6 20 50 2O1 5.8 4.6 0.545
2015 3 8 7 20 43 7 27 15 2E1 6.5 4.6 0.770
2015 3 10 6 30 31 6 35 51 3O1 5.3 4.3 0.567
2015 3 11 19 17 54 19 23 32 2O1 5.6 4.6 0.496
2015 3 11 20 29 50 20 36 10 2E1 6.3 4.6 0.688
2015 3 13 3 26 55 3 31 24 1E2 4.5 4.6 0.494
2015 3 13 9 52 14 10 5 52 1E3 13.6 4.3 0.836
2015 3 13 23 16 16 23 43 41 1E3 27.4 4.3 0.586
2015 3 14 7 50 7 8 10 14 1E3 20.1 4.3 0.805
2015 3 15 9 39 0 9 45 5 2E1 6.1 4.6 0.605
2015 3 16 1 33 32 1 44 11 4O2 10.7 4.9 0.808
2015 3 16 6 46 24 6 58 37 4E2 12.2 4.9 0.947
2015 3 16 16 33 26 16 38 3 1E2 4.6 4.6 0.559
2015 3 17 2 49 11 2 57 20 3E2 8.1 4.4 0.465
2015 3 18 22 47 47 22 53 37 2E1 5.8 4.6 0.521
2015 3 20 5 39 59 5 44 44 1E2 4.7 4.7 0.604
2015 3 20 13 40 37 14 2 8 1E3 21.5 4.3 0.769
2015 3 21 11 40 31 11 53 18 1E3 12.8 4.3 0.578
2015 3 23 18 46 38 18 51 29 1E2 4.9 4.7 0.626
2015 3 24 6 3 35 6 11 24 3E2 7.8 4.4 0.465
2015 3 27 7 53 22 7 58 18 1E2 4.9 4.7 0.626
2015 3 30 21 0 11 21 5 13 1E2 5.0 4.7 0.626
2015 4 2 9 36 12 10 0 22 4O3 24.2 4.6 1.009
2015 4 3 10 7 6 10 12 12 1E2 5.1 4.7 0.626
2015 4 4 22 22 32 22 31 51 2E3 9.3 4.5 0.655
2015 4 6 23 14 5 23 19 15 1E2 5.2 4.8 0.626
2015 4 10 12 21 10 12 26 24 1E2 5.2 4.8 0.626
2015 4 12 1 41 15 1 50 37 2E3 9.4 4.6 1.005
2015 4 14 1 28 20 1 33 36 1E2 5.3 4.8 0.626
2015 4 17 14 35 37 14 40 56 1E2 5.3 4.8 0.626
2015 4 17 15 29 56 15 35 38 4O2 5.7 5.1 0.741
2015 4 18 1 27 45 1 37 1 4O3 9.3 4.7 0.999
2015 4 19 4 59 7 5 8 15 2E3 9.1 4.6 1.066
2015 4 21 3 42 58 3 48 19 1E2 5.4 4.9 0.626
2015 4 24 16 50 28 16 55 50 1E2 5.4 4.9 0.626
2015 4 26 8 16 15 8 24 53 2E3 8.6 4.7 0.682
2015 4 28 5 58 0 6 3 24 1E2 5.4 4.9 0.626
2015 5 1 19 5 43 19 11 7 1E2 5.4 4.9 0.625
2015 5 5 8 13 28 8 18 54 1E2 5.4 5.0 0.607
2015 5 8 21 21 26 21 26 53 1E2 5.5 5.0 0.572
2015 5 12 10 29 24 10 34 52 1E2 5.5 5.0 0.526
2015 5 15 23 37 38 23 43 7 1E2 5.5 5.0 0.496
2015 5 27 7 58 59 8 6 36 3O2 7.6 4.8 0.465
2015 5 27 12 7 21 12 15 15 3O1 7.9 4.7 0.513
2015 6 3 11 28 48 11 36 46 3O2 8.0 4.9 0.465
2015 6 3 15 26 36 15 36 33 3O1 10.0 4.8 0.567
2015 6 4 12 38 1 13 3 43 3O1 25.7 4.8 0.541
2015 6 4 21 53 31 21 57 23 2O1 3.9 5.1 0.470
2015 6 8 11 2 54 11 6 47 2O1 3.9 5.2 0.541
2015 6 10 19 13 4 19 27 56 3O1 14.9 4.8 0.567
2015 6 11 17 18 2 17 30 21 3O1 12.3 4.8 0.567
2015 6 12 0 12 26 0 16 19 2O1 3.9 5.2 0.586
2015 6 15 13 22 8 13 25 59 2O1 3.9 5.2 0.586
2015 6 18 20 57 20 21 6 16 3O1 8.9 4.9 0.553
2015 6 19 2 31 59 2 35 46 2O1 3.8 5.2 0.521
2015 8 5 15 15 5 15 29 17 1E2 14.2 5.4 0.488
2015 8 8 9 32 17 10 16 53 3O2 44.6 5.1 0.465
2015 8 9 4 41 1 4 57 44 1E2 16.7 5.4 0.547
2015 8 9 15 4 30 15 36 47 1O2 32.3 5.4 0.626
2015 8 12 17 34 29 17 50 24 1O2 15.9 5.4 0.455
2015 8 12 18 10 57 18 31 33 1E2 20.6 5.4 0.602
2015 8 16 7 51 50 8 20 44 1E2 28.9 5.4 0.626
2015 8 16 13 24 45 14 2 56 1E2 38.2 5.4 0.626
2015 8 16 14 1 20 14 32 32 1O2 31.2 5.4 0.482
2015 8 19 21 54 17 23 21 23 1E2 87.1 5.4 0.626
2015 8 19 23 46 25 1 21 8 1E2 94.7 5.4 0.626
==================================================================
|
В календарь
| В основное меню
|